Brand Name: YORK
Model Number: YVAA0213AXX46AA
Place of Origin: Guangdong, China (Mainland)
Harness the power to lower your annual energy costs by as much as half with our YVAA Air-Cooled Variable Speed Drive Screw Chiller from YORK. This variable speed chiller provides superior performance while lowering energy consumption and dramatically reducing noise levels.
Our YVAA variable speed chillers are much more than the sum of their parts, giving you elevated efficiency through advanced heat exchangers and smart controls. Take a step forward and leave a smaller footprint with a chiller as unique as your cooling needs.
For over 135 years, Johnson Controls has raised the bar of chiller design and customer
expectations. We are raising the bar again with a leap forward in air-cooled chiller
technology. Continuing the history of innovation in both compressor design and Variable
Speed Drive (VSD) technology, Johnson Controls proudly introduces the YORK® YVAA.
In the past, the choice to use an air-cooled chiller came with the expectation of compromise,
where simplicity of design and maintenance were traded for performance and efficiency.
The new YVAA provides a better balance by combining the best of both - a high
performance design that minimizes the total cost of ownership.
YORK YVAA model air-cooled chillers provide superior performance. Higher efficiency
heat exchangers coupled with variable speed operation and smart controls elevate the
system efficiency to a whole new level. The resulting benefit from YVAA chillers is much
greater than the sum of its parts.
Efficiency: Reduce your consumption - YVAA chillers are Johnson Controls’ most efficient
air-cooled chillers. The design offers a lighter, smaller and quieter package that
minimizes the installed cost and maximizes usable building space. YVAA chillers are simpler
in design with easy access to service components for reliable operation and efficient
maintenance. With up to a 40% improvement in real world efficiency versus current products,
YVAA sets the new standards for lowering energy use.
Sustainability: Improve your environmental footprint - YVAA lowers both direct and indirect
impact on the environment. It uses R134a refrigerant which has zero ozone depletion
potential (ODP). The design minimizes the quantity of refrigerant used in the system. Every
YVAA model helps LEED projects earn the Energy and Atmosphere Credit 4. The highest
portion of green house gases is carbon dioxide generated from electric power plants. HVAC
systems are one of the largest consumers of electricity in commercial buildings. YVAA chillers
reduce the electricity usage, thereby contributing to reducing greenhouse gases and
helping keep the planet cool.
Low Sound: Quiet operation makes you a good neighbor - The variable speed technology
on YVAA allows unparalleled low sound levels at off peak design conditions. This
makes YVAA a great solution for sound sensitive zones. Several acoustic attenuation options
such as smart controls (SilentNight™), aerodynamic fans, and effective sound enclosures
allow the chiller to meet even the most stringent sound level requirements.
Confidence: Proven performance provides peace of mind - YVAA design is proven by
years of success with the previous generation of YORK VSD air-cooled screw chillers with
thousands of machines operating in more than one hundred countries.
YVAA is configurable to be the perfect fit for your unique needs. YVAA offers an array
of options that can be tailored and tuned to match the capacity, efficiency, sound and
footprint for your specific application. Several variations of condenser fans, evaporator
arrangements, sound kits, protection enclosures, and controls schemes are available to
meet specific requirements for your site.
SEMI-HERMETIC YORK TWIN SCREW COMPRESSORS
The direct-drive, semi-hermetic rotary twin-screw compressors incorporate advanced
technology in a rugged design. The continuous function, microprocessor controlled VSD
provides smooth capacity control from 100% down to 10% of chiller capacity. State-ofthe-
art technology, obtained from decades of screw compressor design and manufacturing
by FRICK®, ensures optimal efficiencies at all chiller load points. With no unloading
steps or slide valves in the compressors, the YVAA variable speed driven compressors
have 50% fewer moving parts than fixed speed compressors with slide valves. The YVAA
compressor is one of the most efficient and reliable screw compressors in the industry.
EVAPORATOR
The evaporator is a shell and tube, hybrid falling film type heat exchanger. It contains a
balance of flooded and falling film technology to optimize efficiency, minimize refrigerant
charge, and maintain reliable control. A specifically designed distribution system provides
uniform refrigerant flow for optimum performance.
CONDENSER
The YVAA introduces the microchannel coil to the YORK screw compressor chiller line.
Microchannel coils are made of a single material to avoid galvanic corrosion due to dissimilar
metals. Coils and headers are brazed as one piece, minimizing leaks. The inherently
rugged coil construction, which includes non-overhanging fins, eliminates the possibility
of fin damage. The microchannel maximizes condenser heat transfer, resulting in a
smaller footprint, and reduces refrigerant charge by as much as 50%. The design working
pressure of the microchannel condenser is 375 PSIG (25.9 bar).
The condenser fans are composed of corrosion resistant aluminum hub and glass-fiberreinforced
polypropylene composite blades molded into a low-noise airfoil section. All
blades are statically and dynamically balanced for vibration-free operation. Fan motors
are Totally Enclosed Air-Over (TEAO), squirrel-cage type and current protected. The direct
drive motors feature double-sealed and permanently lubricated ball bearings, cutting
down on maintenance cost over the life of the unit.
REFRIGERANT CIRCUIT
The YVAA has one independent refrigerant circuit per compressor. Each circuit uses
copper refrigerant pipe formed on computer-controlled bending machines. By using computer-
aided technology, over 60% of system piping brazed joints have been eliminated
(as compared to designs that use fittings), resulting in a highly reliable and leak-resistant
system.
COMPLETE FACTORY PACKAGE
Each unit is shipped as a complete factory package, completely assembled with all interconnecting
refrigerant piping and internal wiring and ready for field installation. Prior
to shipment, each individual chiller undergoes an extensive testing procedure, ensuring
workmanship is the highest quality and that the initial start-up is trouble-free.
Before leaving the factory, each refrigerant circuit is factory pressure tested, evacuated
and then fully charged with R134a refrigerant and oil. An operational test is performed
with water flowing through the evaporator to ensure each circuit functions correctly.
ELECTRICAL
All controls and motor starting equipment necessary for unit operation are factory wired
and function tested. There are no surprises when you go to start-up; you can have confidence
that the unit will start up right the first time and every time.
The chillers are available with a single point power connection and are supplied with a
factory mounted and wired control transformer that powers all unit controls from the main
unit power supply. The transformer utilizes scheduled line voltage on the primary side and
provides 115V/1Ø on secondary. The standard unit is equipped with terminal block electrical
connections. All exposed power wiring is routed through liquid-tight, UV-stabilized,
non-metallic conduit. Selection of frame 36 and larger are standard dual point, with single
point option.
VSD Power/Control Panel includes main power connection(s), VSD and fan motor contactors,
current overloads, and factory wiring. All display and control features can be accessed
through the keypad and control display access door, eliminating the need to open
the main cabinet doors.
BUILDING AUTOMATION SYSTEM CAPABILITIES
The YVAA chiller comes standard with native communication capability for BACnet (MS/
TP), Modbus and N2, with optional capabilities available for LON. The standard unit capabilities
include built-in-scheduling, remote start-stop, remote water temperature reset
and up to two steps of demand (load) limiting depending on model. The standard control
panel can be directly connected to a Johnson Controls Building Automated System via the
standard factory-installed RS232 communication port.
For connection with Johnson Controls Connected Services, an optional interface card
(SC-EQUIP) is required and may be factory installed for easier field commissioning. Additional
hardware (SC-AP access point), field provided, must be installed remotely from the
chiller to interface with the Connected Services remote operations center. Contact your
local Johnson Controls office to learn more about Connected Services and to schedule
installation during chiller commissioning.
AHRI CERTIFICATION PROGRAM
YORK YVAA chillers have been tested and certified by Air-Conditioning, Heating and Refrigeration
Institute (AHRI) in accordance with the latest edition of AHRI Standard 550/590
(I-P). Under this Certification Program, chillers are regularly tested in strict compliance
with this Standard. This provides an independent, third-party verification of chiller performance.
Refer to the AHRI site at: http://www.ahrinet.org/ for complete Program Scope,
Inclusions, and Exclusions as some options listed herein fall outside the scope of the
AHRI certification program. For verification of certification, go to the AHRI Directory at
www.ahridirectory.org.
Rated in accordance with the latest
issuance of AHRI Standard 550/590
and 551/591.
COMPUTERIZED PERFORMANCE RATINGS
Each chiller is custom-matched to meet the individual building load and energy requirements.
A variety of standard heat exchangers and pass arrangements are available to
provide the best possible match.
It is not practical to provide tabulated performance for each combination, as the energy
requirements at both full and part load vary significantly with each heat exchanger and
pass arrangement. Computerized ratings are available through each Johnson Controls
sales office. Each rating can be tailored to specific job requirements, and is part of the
AHRI Certification Program.
OFF-DESIGN PERFORMANCE
Since the vast majority of its operating hours are spent at off-design conditions, a chiller
should be chosen not only to meet the full load design, but also for its ability to perform
efficiently at lower loads. It is not uncommon for chillers with the same full load efficiency
to have an operating cost difference of over 10% due to differences in off-design (partload)
efficiencies.
Part load information can be easily and accurately generated by use of the computer. And
because it is so important to an owner’s operating budget, this information has now been
standardized within the AHRI Certification Program in the form of an Integrated Part Load
Value (IPLV), and Non-Standard Part Load Value (NPLV).
The current IPLV/NPLV rating from AHRI Standard 550/590 and 551/591 much more
closely tracks actual chiller operation, and provides a more accurate indication of chiller
performance than the previous IPLV/APLV rating. A more detailed analysis must take into
account actual building load profiles, and local weather data. Part load performance data
should be obtained for each job using its own design criteria.
UNIT CONTROL CENTER
The unit control center (see Figure 1) provides automatic control of chiller operation including
compressor start/ stop and load/unload anti-recycle timers, condenser fans,
chilled liquid pump, evaporator heater, unit alarm contacts and run signal contacts. The
microcomputer control center comes online as soon as the main power switch on the unit
is switched on; immediately, the microcomputer control center will begin to continuously
monitor all variables.
Figure 1 - VIEW OF YVAA CONTROL CENTER KEYPAD AND DISPLAY
The microprocessor controls the unit’s capacity by matching the actual leaving chilled
liquid temperature (LCHLT) to the user-defined setpoint. Factors that may cause the
system’s actual LCHLT to fluctuate are changes in ambient temperature, load, and chilled
liquid loop flow rate and volume. The controls system reacts to such changes by adjusting
the number of compressors that are on and the loading of each compressor in order
to keep the LCHLT at the setpoint.
The controls system logic monitors the rate at which the LCWT is approaching the setpoint
to ramp up or down compressor capacity as required. The variable frequency drive
allows the compressor capacity to match the load.
During extreme or unusual conditions (i.e. blocked condenser coils, ambient above scheduled
maximum, etc.) the chiller control system will avoid shutdown by varying capacity. By
monitoring motor current and suction and discharge pressures, the chiller can maintain
maximum available cooling output without shutting down.
Unit Safeties are provided for the chiller to perform auto-reset shut down for the following
conditions:
• Ambient temperature above or below allowable range
• Out of range leaving chilled liquid temperature
• Under voltage
• Flow switch operation
Display Data
• Leaving Chilled Liquid Temperature
• Returning Liquid Temperature
• Ambient Temperature
• Lead System
• Compressor Capacity (% of Full Load Amps)
• VSD Output Frequency / Compressor Speed
• Compressor Run Hours
• Compressor Number of Starts
• Oil Pressure and Temperature (per Compressor)
• Chilled Liquid Pump Status
• Evaporator Heater Status
• History Data for Last Twenty Normal Shutdowns
• History Data for Last Ten Shutdown Faults
Programmable Setpoints
• Chiller on/Off
• Chilled Liquid (Water or Glycol)
• Local or Remote Control
• Units of Measure (Imperial or SI)
• System Lead/Lag
• Remote Temperature Reset
• Remote Current Limit
• Leaving Chilled Liquid Temperature Setpoint and Range
All options factory mounted unless otherwise noted.
SOUND ATTENUATION
Low Noise Kits – The standard chiller configuration is equipped with low sound fans.
There are several sound attenuation options available to further reduce sound at its
source thereby meeting local sound level regulations.
SilentNight™ - Due to time-of-day based sound regulations in some locations, it may be
desirable to force the chiller to a lower sound level on demand. The SilentNight control
option provides a control input to limit sound output of the chiller based on time of day.
This feature is programmable at the chiller panel or can be controlled remotely via a signal
(4-20mA or 0-10 VDC) from a BAS system.
Ultra Quiet Fans – The chiller is equipped with specially designed fans and motors to provide
lower sound levels yet retain appropriate airflow. The result is reduced fan generated
sound with minimal effect on the chiller capacity or efficiency at standard AHRI conditions.
The fans are three-bladed for 60Hz and five-bladed for 50Hz.
FAN OPTIONS
High Static Fans - (380V/60 Hz, 460V/60 Hz, 400V/50 Hz) The chiller is equipped with
condenser fans with higher power motors suitable for high external static pressure, up to
100Pa (0.4 in. water), across condenser coils. This option should be selected if additional
airflow resistance may be present due to flow restrictions such as field installed ducts,
filters, sound enclosures etc. Please contact your local Johnson Controls representative
for more information.
High Airflow Fans - (380V/60 Hz, 460V/60 Hz, and 400V/50 Hz) The chiller is equipped
with condenser fans with airfoil-type polycarbonate blades and higher power motors providing
extra airflow across coils. In some chiller configurations, this option can provide an
increase in chiller capacity at high ambient. Please contact your local Johnson Controls
representative for more information.
CONDENSER
Coils – Fin and tube condenser coils of seamless, internally-enhanced, high-condensingcoefficient,
corrosion resistant copper tubes are arranged in staggered rows. The tubes
are mechanically expanded into aluminum fins. Integral subcooling is included. The design
working pressure of the coils is 350 PSIG (24 barg).
CONDENSER COIL PROTECTION
The aluminum alloys used in the YVAA microchannel condenser have been carefully selected
and tested for high corrosion resistance. However, all metals can corrode in harsh
conditions. Consider protecting coils from corrosive environments such as coastal, marine,
urban and industrial.
JOHNSON CONTROLS
FORM 201.28-EG1 (1016)
12
Environment Guard Premium – Microchannel condenser coils coated with an electro-
deposited and baked flexible epoxy coating that is finished with a polyurethane
UV resistant top-coat.
Environment Guard Basic – Microchannel condenser coils treated with immersion
bath-applied chemical treatment.
Microchannel condenser shall be provided with a 5-year warranty against corrosion
damage.
PROTECTIVE CHILLER PANELS
Wire Panels – Heavy-gauge, welded-wire-mesh guards mounted on the exterior of the
full unit. The guards are coated to prevent corrosion with a UV stabilized material. Protects
condenser coil faces and prevents unauthorized access to refrigerant components
(compressors, pipes, evaporator, etc.), yet provides free air flow. This can cut installation
cost by eliminating the need for separate, expensive fencing. See Figure 2.
Figure 2 - FULL UNIT WIRE PANELS
Louvered Panels – Louvered panels, painted the same color as the unit, enclose the unit
to visually screen and protect the coils as well as prevent unauthorized access to internal
components. Also available as a condenser-only option. See Figure 3.
ANSI/AWWA C-606 Flanges - 4 flanges, for applications where customer wants
flanged connections which do not exist on the field piping.
• Weld Flanges - 2 flanges, for customer to weld to evaporator to mate to existing
flanges on field piping.
• Weld Flanges - 4 flanges, for customer to weld to evaporator and customer wants
flanged connections which do not exist on the field piping
Connection Location - The standard unit configuration is available with liquid inlet connections
at rear (opposite control panel end) of unit. Option available for front fluid inlet on
select configurations.
Three-Pass – The standard evaporator is constructed with two chilled water passes
through the evaporator. The three-pass option is recommended for use in brine applications
or where a greater water temperature difference is required but efficiency cannot be
sacrificed.
Single Pass – The single pass evaporator option offers the lowest water pressure drop
and is recommended for high flow or series chiller applications.
300 PSIG Cooler – Standard cooler is rated 150 psig; 300 PSIG is available for applications
such as high rise buildings.
Water Box Heater - The standard unit comes with freeze protection on the evaporator
down to 0°F (-17.8°C). Unless the appropriate concentration of glycol is used, optional water
box heaters are required for storage below 0°F (-17.8°C). See Application Data section
for additional information on freeze protection. A separate, customer supplied 120V/60Hz
or 230V/50Hz single phase power supply is required. For 120V 60Hz, total amp draw for
the two heaters is 6A. For 240V 50Hz, total amp draw for the two heaters is 3A.
CONTROLS OPTIONS
Building Automation System Interface (Temperature) - Factory installed option to accept
a 4 to 20 mA or a 0 to 10 VDC input to allow remote reset of the Leaving Chilled
Liquid Temperature Setpoint. The setpoint can be positively offset upwards up to 40°F
(22.2°C). This option is useful for ice storage or process applications or for periods where
higher chilled liquid temperatures are adequate for low loads. Available alone or in combination
with BAS Load Limit.
Building Automation System Interface (Load Limit) - Factory installed option to accept
a 4 to 20 mA or a 0 to 10 VDC input to allow remote reset of the Load Limit Setpoint. The
setpoint can limit system demand from 30-100%. Available alone or in combination with
BAS Temperature Reset.
E-Link – The E-Link gateway provides full communication to Building Automation Systems,
including BACnet (MS/TP), Modbus, LON and N2.
Thermal Storage – Provides special control logic and modifications to produce leaving
chilled brine temperatures below 40°F (4.4°C) primarily at times of low ambient temperatures
(night time). Option can be used to produce ice to supplement cooling and significantly
decrease energy costs. The capability of the chiller is enhanced by using both ice
and chilled liquid simultaneously during times of peak cooling needs
GENERAL OPTIONS
Flow Switch Accessory - Vapor proof SPDT, NEMA 3R switch, 150 psig (10.3 barg)
DWP, -20°F to 250°F (-29°C to 121°C) with 1” NPT (IPS) connection for upright mounting
in horizontal pipe (This flow switch or equivalent must be furnished with each unit). Field
mounted.
Differential Pressure Switch – This 3-45 psig (0.2-3 barg) range switch, with 1/4” NPTE
pressure connections, is an alternative to the paddle-type flow switch. Field mounted.
Service Isolation Valve – Service suction isolation valve added to the unit for each refrigerant
circuit. Valve is available in both manual and chiller actuated configurations. Actuated
valve is recommended for operation below freezing ambients with water in evaporator
(refer to "Operation in Sub-freezing Conditions" on page 20).
Chicago Code Relief Valve - Special relief valves per Chicago code.
Dual Pressure Relief Valve – Two safety relief valves are mounted in parallel; one is
always operational to assist in valve replacement during maintenance.
Pressure Vessel Options – The evaporator can be provided with either ASME or PED
pressure vessel codes certification.
Circuit Breaker – Unit-mounted circuit breaker(s) with external lockable handle(s) will be
supplied to isolate the power voltage for servicing. The circuit breaker(s) is (are) sized to
provide motor branch circuit protection, short circuit protection and ground fault protection
for the motor branch-circuit conductors, the motor control apparatus and the motors.
Non-Fused Disconnect Switch – Unit-mounted disconnect switch(es) with external lockable
handle can be supplied to isolate the unit power voltage for servicing. Separate
external fusing must be supplied by the power wiring, which must comply with local codes.
Thermal Dispersion Flow Switch – Solid state thermal dispersion flow switch with no
moving parts for high reliability and long service life. Stainless steel probe and IP 67
housing with LED status indicator of flow and output condition. Includes 10m IP67 cable
required for field installation near chiller and bronzed steel welding adapter to ensure
cor¬rect insertion depth. Field Mounted.
Special Requirement Documents – There are two options to select from:
• Special Requirement Document Package (SRDP) includes Pressure Vessel Report,
Unit Run Test Report, Production System Check Sheet and Final Unit Inspection
Check Sheet.
• Materials Package includes steel mill material reports for vessels in addition to the
SRDP.
VIBRATION ISOLATION
Elastomeric Isolation – This option is recommended for normal installations. It provides
very good performance in most applications for the least cost. Field mounted.
1” Spring Isolators – Spring and cage type isolators for mounting under the unit base
rails are available to support unit. They are level adjustable. 1” nominal deflection may
vary slightly by application. Field mounted.
2” Restrained Spring Isolators – Restrained Spring-Flex Mounting isolators incorporate
a rugged welded steel housing with vertical and horizontal limit stops. Housings designed
to withstand a minimum 1.0g accelerated force in all directions up to 2” (51mm). The deflection
may vary slightly by application. They are level adjustable. Field mounted.
Low pressure refrigerant (liquid and gas) enters the evaporator and is sprayed across the
top of the tube bundle from spray nozzles. The liquid refrigerant from the nozzles gravity
drains down across the tube bundle and is evaporated and superheated by the heat
energy absorbed from the chilled liquid passing through the tubes.
The low pressure refrigerant vapor leaves the top of the evaporator and enters the compressor
where the refrigerant vapor is compressed and the pressure and superheat are
increased. The high pressure superheated gas enters the air cooled condenser where
heat is rejected via the condenser coils and fans.
The fully condensed and sub-cooled liquid leaves the air cooled condenser, flows through
the filter drier and enters the economizer tank. The flow of refrigerant into the economizer
is controlled by the electronic expansion valve.
Additional cooling of the refrigerant liquid may take place in the economizer tank when
the economizer valve is opened. After leaving the economizer tank, liquid refrigerant
flows through an orifice where pressure reduction and further cooling take place. The low
pressure refrigerant (liquid and gas) then enters the evaporator.
UNIT SIZING
Avoid over-sizing a chiller. Properly sized chillers operate stably and provide the best
life cycle cost. When designing phased projects, select multiple small chillers to match
demand for each phase. Use multiple small chillers when the minimum cooling demand
is less than 10% of the maximum cooling demand.
UNIT LOCATION
The YVAA chillers are designed for outdoor installation. To achieve optimum performance
and trouble-free service provide adequate space around chillers (see Figure 7).
?????????????
??????
???????? ????
???????
?????????????
Figure 7 - ACCEPTABLE MINIMUM CLEARANCES AROUND/BETWEEN UNIT(S)
FOR PROPER AIRFLOW
When selecting chiller installation sites, follow these requirements:
A. Installation sites may be either on a roof or on ground level. (See FOUNDATION on
Page 19)
B. Provide space for air to flow into condensers per dimensions shown on the dimension
drawing on "Dimensions" on page 42. Restricted airflow or hot air recirculation
will diminish performance. Johnson Controls’ unit controls will optimize the operation
without nuisance high pressure safety cutouts; however, the system designer MUST
consider potential performance degradation. Recommended clearances for all units
are as follows:
1. Access to the unit control center stipulates the unit is no higher than on spring isolators